Constraint on Defect and Boundary Renormalization Group Flows.

نویسندگان

  • Kristan Jensen
  • Andy O'Bannon
چکیده

A conformal field theory (CFT) in dimension d≥3 coupled to a planar, two-dimensional, conformal defect is characterized in part by a "central charge" b that multiplies the Euler density in the defect's Weyl anomaly. For defect renormalization group flows, under which the bulk remains critical, we use reflection positivity to show that b must decrease or remain constant from the ultraviolet to the infrared. Our result applies also to a CFT in d=3 flat space with a planar boundary.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Correlation Functions in Holographic Renormalization Group Flows

We consider the holographic duality for a generic bulk theory of scalars coupled to gravity. By studying the fluctuations around Poincaré invariant backgrounds with nonvanishing scalars, with the scalar and metric boundary conditions considered as being independent, we obtain all oneand two-point functions in the dual renormalization group flows of the boundary field theory. Operator and vev fl...

متن کامل

On Boundary Perturbations in Liouville Theory and Brane Dynamics in Noncritical String Theories

We study certain relevant boundary perturbations of Liouville theory and discuss implications of our results for the brane dynamics in noncritical string theories. Our results include (i) There exist monodromies in the parameter μB of the Neumann-type boundary condition that can create an admixture represented by the Dirichlet type boundary condition, for example. (ii) Certain renormalization g...

متن کامل

Reversing Renormalization-Group Flows with AdS/CFT

For scalar fields in AdS with masses slightly above the Breitenlohner-Freedman bound, appropriate non-local boundary conditions can define a unitary theory. Such boundary conditions correspond to non-local deformations of the dual CFT, and generate a non-local renormalization-group flow. Nevertheless, a bulk analysis suggests that certain such flows lead to local CFTs in the infrared. Since the...

متن کامل

Renormalization group equations and geometric flows

The quantum field theory of two-dimensional sigma models with bulk and boundary couplings provides a natural framework to realize and unite different species of geometric flows that are of current interest in mathematics. In particular, the bulk renormalization group equation gives rise to the Ricci flow of target space metrics, to lowest order in perturbation theory, whereas the boundary renor...

متن کامل

Boundary RG Flows of N = 2 Minimal Models

We study boundary renormalization group flows of N = 2 minimal models using Landau-Ginzburg description of B-type. A simple algebraic relation of matrices is relevant. We determine the pattern of the flows and identify the operators that generate them. As an application, we show that the charge lattice of B-branes in the level k minimal model is Zk+2. We also reproduce the fact that the charge ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 116 9  شماره 

صفحات  -

تاریخ انتشار 2016